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An Efficient Method to Determine Green’s Functions
of a Two-Dimensional Photonic Crystal Excited by
a Line Source—The Phased-Array Method

Christophe Caloz, Anja K. Skrivervik, and Fred E. Gardldfe Fellow, IEEE

Abstract—A novel and efficient method to determine Green’s New wave theories and computational techniques have be-
functions in photonic crystals (PCs), i.e., the phased-array method come necessary to design novel devices and components associ-
(PAM), is presented. The PAM is a combination of the plane-wave ztaq with PCs. The existing analytic and numerical methods, in-
method and the array-scanning method, which is both more cluding the plane-wave method (PWM) [15], [16], the finite-dif-

flexible and computionally faster than the eigenmodes expansion . .. .
method. A complete derivation of the electric- and magnetic-field ference method, and the finite-element method, are limited ei-

Green’s functions associated, respectively, with an infinite electric ther to fully periodic structures or highly localized modes. There
and magnetic current line exciting a two-dimensional PC is given. is, therefore, a need for computational schemes yielding the field

Although the developments are presented only for a line source, splution of integrated-circuit components interaction with di-
the PAM can be extended to a dipole source. Thus, the PAM gjectric periodic materials. A very general method, consisting

represents a promising method for the analysis of printed-circuit : S h . . N
elements or antennas on PC materials. Numerical results for the of a vector integral equation in conjunction with an array scan

Green's functions are shown for different positions of the source NiNG method (ASM), has been presented in [17] to bridge this
and a discussion about radiation patterns, asymptotic behaviors, gap. In this method, the periodic implants of the PC structure are
and convergence characteristics is proposed. modeled by equivalent displacement currents, which are deter-
Index Terms—Array scanning method, Green’s functions, mined by a methlod-of—moments prgcedulre. In thg present paper,
phased-array method, photonic bandgaps, photonic crystals, W& propose a different approach, in which the information on
plane-wave method. periodicity is included directly in the Green'’s function, i.e., the
phased-array method (PAM), which should soon be applicable
to microstrip structures.
|. INTRODUCTION The PAM is a combination of the PWM and ASM [18], [17].
VER THE last decade, photonic crystals (PCs), artificidh contrast to the modal approach of the eigenmodes expansion
periodic structures made of dielectric or metallic matenethod (EEM) [19], [20], it directly solves the inhomogeneous
rials, have drawn significant attention because of their abiligyadic wave equation for the auxiliary problem of a phased
to exhibit photonic bandgaps (PBGSs), i.e., frequency bandsdrray of sources that share the periodicity of the PC. The permit-
which no electromagnetic energy can propagate [1]-[5]. The d@ty is still expanded in a Fourier series as in the EEM, but in
vances in material processing technology and the scalabilitytbe PAM, the expansion over Bloch—Floquet harmonics applies
PCs to a wide range of frequencies have lead to a vast numtmethe periodic Green’s functions of the auxiliary problem, and
of promising applications, not only in the optical range, wheneot to the field modes. Once these periodic Green’s functions
research on PCs started in the early 1990s, but also at the haive been determined by solving a matrix system for their coef-
crowave and millimeter-wave frequencies. Among these apgieients, the actual Green’s functions are obtained by the ASM,
cations, we can mention high-cavities and filters [6], low-loss which transforms the fields due to infinite phased arrays to those
bent waveguides [7], light-emitting diodes [8], low-thresholdiue to a singlé source. The PAM is a more efficient and flex-
lasers [9], high-impedance surfaces [10], and a novel classiloie method than the EEM. Itis much faster because itinvolves a
microstrip lines, filters, and antennas [11]-[13]. In the futurenore direct computational procedure. Moreover, it does not re-
the utilization of all-dielectric PCs as substrates for microstriguire the determination of orthonormality and closure relations,
planar antennas will be of particular interest when going wphich are necessary and sometimes problematic in the EEM.
to millimeter frequencies. In this application the PC substrakgnally, it works equally well for all field and potential Green’s
should filter out the spurious surface waves that would propfmnctions, which is not the case for the EEM, where the elec-
gate in a homogeneous substrate [14], without introducing pitoic-field Green'’s functions, for instance, are very cumbersome
hibitive losses like metallic cavities do and, therefore, increabecause they are related to a non-Hermitian operator [19].
the gain and reduce the sidelobe level of the overall antenna. In this paper, the PAM is presented in the context of an in-
finite electric or magnetic current line exciting a two-dimen-
Manuscript received August 4, 1999; revised August 4, 2000. sional (2_D) PC. Two Greents functlons, l.e., the elegtrlc- an.d
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Fig. 1. Infinite electric or magnetic current lind(p), M(p)) embedded in a ‘\\ ,,'.
2-D PC. The line source is locatedmt= p’. 3
o »
Il. MATHEMATICAL FORMULATION ,3 ,\
o .
The structure under consideration is shown in Fig. 1. It con- I A NN
sists of an unbounded 2-D PC excited by an infinite current line ¢ ¢ e e e
source, which can be either electric or magnetic. The PAM can
be easily applied for any kind of 2-D PC, whatever lattice type ©

(Square’ h(_:»_(agon?l' reCt?‘ngmar' Ob_hque’ honEycomb) and IHE;' 2. Square Bravais lattice of lattice constant (a) Direct lattice.
homogeneities or “atoms” shapes (circular, square, rectangulByReciprocal lattice. (c) Reciprocal lattice and BZ.

any; compounded) it possesses. For convenience, we will con-
sider a PC constituted of circular atoms of permittivityem-
bedded in a background medium of permittivity The atoms
are assumed to be parallel to thexis, and the intersections J
of their axis with thery-plane form a 2-D-square Bravais lat- ¥ Jo(p),
tice [21], as can be seen in Fig. 2. The sites of this lattice are A
given by the vector®®, = ma; + naz (m, n € Z), with the e 1z )
primitive direct vectorsy; = ae, andaz = ae,, whereq rep- ] e | f
resents the lattice constant [see Fig. 2(a)]. The reciprocal lattice = — —
vectors then real, = hby + kbs (h, k € Z), with the prim-
itive reciprocal vectordy = (2w/a)e, andb, = (2n/a)e, y
[see Fig. 2(b)], and the Brillouin zone (BZ) is the square sur-
face constituted by the Wigner—Seitz cell of the reciprocal lat- Py
tice, which is enclosed by the limi{s-7/a, 7/a] along both L - -
directionse andy [see Fig. 2(c)]. The line is assumed to be par- z
allel to the atoms, and the electric or magnetic currents on this
line can be written, respectively, d¢p) = I §(p — p')e. and — — L
M(p) = L é(p — p')e., wherep' represents the position of the
line in the transversey-plane and andL denote, respectively, fig. 3. Phased array of infinite electric or magnetic current links, (p),
the electric and magnetic current intensity on the line. M,,(p)) embedded in a 2-D PC. Each line source with phasiifg #- is

It is well known [22], [23] that the modes of an unboundelfcated @ = ¢ + R,.
2-D PC separate into pure TM (dt-polarized) and TE (or
H-polarized) modes, which correspond, respectively, to tiRartial PBGs can, therefore, be obtained with lower permittivity
(H,, H,, E.) and(E,, E,, H.) nonzero fields components.contrastsAe [Ae = €max/Emin, Whereen.x = max(e,, €)
By reason of symmetry, we can assert that the electric (respanée,,;,, = min(e,, ;)] and lower filling ratios f,. (ratio of
tively, magnetic) current line may couple its energy only witthe volume of the atoms over the volume of the complete PC).
TM modes (respectively, TE modes) of the PC, as long as theThe Green’s functions for the problem depicted in Fig. 1
current along the line is constant. This means that the effectw@nnot be determined in a direct manner because neither ape-
PBGs will be TM PBGs (respectively, a TE PBGS) in the cags@dic, nor periodic boundary conditions can be used; the prop-
of the electric (respectively, magnetic) current line, and nagation medium being periodic and the source aperiodic. In the
necessarily complete TM/TE PBGs. We note that such part@ntext of the PAM, instead of directly solving the problem
(TM or TE) PBGs are easier to achieve than complete PB@6the isolated source in the PC, we first consider the geom-
since the latter ones consist of overlapping of the former onetty shown in Fig. 3, where the PC is excited by an infinite
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phased array of current line sources sharing the same perigg-x {L V x EHM (p|p/, E )
icity as the PC and possessing progressive phase shifts given by | €.(p) v T

¢p = k,-R,, wherek, is a phasing vector (see Appendix ). The W\ 2 _

electric and magnetic lines currents can, therefore, be writtenas — <E> G, (plo's kp) = —jweol My, (p)/L

follows: (3b)

< AJJ z((/;))) _ < A‘Zf(”/})) c. where the expressions df, (p) and M, (p) are given by (1).

Since the dyadic function&r; . and Gy, are peri-
odic in modulus, they can be expanded over Bloch—Floquet

I ik
B <L> Z Sp—p — R,)™* | e. (1) harmonics
RP

GEy,.. (pl0s ky) )

H _ / H frd
where each line located pt= p’ + R, possesses the phasmg( Gu,.. (p|p/; k,,)

eike R ~ ,

In this auxiliary phased-array problem, the complete struc- —e. QEJ(P i ks G,,) I ®tG,) (PP
ture is periodic, except for the phasing dependence, which will G, JHM (p’; k,, Gp)
be used later to return to the original problem. It is, therefore, (4)

possible to determine the Green'’s functions, which will also be

periodic, except for the phasing, and which will be referred tohere the G,-spectral coefficientsgr;(p'; k,, G,) and

by the generic notatiot,,..(plp’; k). gum(p'; k,, G,) depend on the positiopl of the zero-phased
OnceGye:(ple'; k,) has been determined, the correspondirgpurce and on the phasing veckor This Bloch—-Floquet spec-

Green'’s function of the original problei@(p|p’) can be ob- tral expression of the Green’s functions is formally analogous

tained by performing the following integration on the phasintp the one presented in [25] for the case of a phased array
vectork,, over the BZ: of dipoles on arhomogeneougrounded substrate. However,

because of the inhomogeneity of the propagation medium,
— 1 = the spectral Green’s coefficients will be determined here in a
G(plp') = S, Gpe: (0l0'; k) dkp.- ) completely different way.
BZ JBZzZ i i ) L. . =
The following amplitude periodicity relations fé¢¢ s and
The integration in (2), which is well known from theﬁHMpcr:
phased-array theory [24], [18], represents in effect the super-
position of the phased-array solutions corresponding to t e@EJpcr (p+R,,|p’; k,,) kR EEJW (p|p/; k,,)
phasinge’*-B-_ In this mathematical superposition, that i§ = . e I (olo: k)
allowed by the physical superposition principle of electro- Gy (P+Ryl0s Ky HMper \PIP' B
magnetic fields in linear systems, the effects of all the sources ®)
are cancelled out., e>§cept the one of the source POSSESSING R pe easily verified, taking into account the fact that
zero phasing, which is to say, the source locategd at p'. It ¢iGs-Ry — 1 by definition [21].
sh_ould be qoted that this ;ource dpes not need to belong to thRIOW that we have found the spectral representations (4) of
Wigner—Seitz cell of th.e dlrec.t lattice. , . the Green’s functions through the Bloch—Floquet theorem, we
Alth?ugh th_e PAM |s_appl|c§1ble to any f'?ld or potenuagti" have to determine the corresponding spectral representation
Green’s function, we will restrict ourselves in this paper B the array currents (1) in order to solve (3). This can be done

the Green’s function of the electr!c fiell due to an _ele_ctrlc with the help of the Poisson’s sum formula (see Appendix 1),
sourceJ and to the Green’s function of the magnetic fidld | .. yields

due to a magnetic sourdd, which we note, respectively, as
Gy andGp . It should be noted that these two problems are T, (p)
not dualsbecause of the dissymmetry introduced in Maxwell < g )
equations by the space-varying permittivity of the PC. Hence,
we expect different behaviors f6¥x; andG sr5s, especially if

the PC presents an important permittivity contrast Wf]ﬁ:eéith d?notgs fthre surfa?r:a OI thti Bf' lution of the wav
The dyadic wave equations relevant@g.;,., andG © 'ast step belore passing fo the resolution of the wave

PT equations consists in expressing the relative permittiyity)
read . . e
and the inverse of the relative permittivity.(p) = 1/e.(p)
_ w\ 2 _ functions as Fourier series expansions, which is allowed because
V xV x Gga,.. (plp; kp) — <E> e (p)GEs,.. (plP; k,)  these functions are periodic as follows:

el )s (@) e o

S I B o
— o (1) [Zesere ) 6

M¢p (p) G,
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where the terms$,.(G,) and,.(G,) denote, respectively, the Upon developing the curl terms, substitutiig = G’p—i-G’Z,
Fourier coefficients of,.(p) andx.(p), which are given for cir- and dividing both sides in (9) by~¢+"#’, we obtain

cular atoms by
2
( (5‘1 ) > {(kp +G,) irs(G,) - <%>
1k @,

€a

€ N (@, - @) GG g (@)
e (Gp ) 5_ 2
= b (8) . ’
K . ko +G,)-(p—p')
< (Gp) (eqa —€b) ¢! 5 ot
LW 7 Ap—p
<i B l) = —i S 2O e (10a)
€a = G,
2J1(G,R,.) .
ST p G, £0 . L
\ G,R. / s > {Z For (G,, — G;)CNGP—G;))-P (k,+G,)
GP

G,
with the filling ratio f,. = n(R./a)?.

2
. ) _ ) Ww\?
Inserting (4), (6), and (7) into (3) then yields . (k,; + G’,,)QHM (G;,) _ <E> gHM(Gp)}
~ - . = . i (katGL)-(p—p)
V XV X Z GEs (p/; k,, GP)CJ(kp+Gp)'(P—P )Iz] ¢ g
G, _ _;we0oBz i(ky+G,) - (p—p') 1
I~y e (10b)

P

2
-(2) (Zele)ee
¢ Gy where the(p’; k,) dependence of the spectral coefficients has
been dropped for simplicity.
. p (e VT By identification we can leave out the summati and
D dea(es Ky, G ) Rt G eme ’ 1) ot Go)-(p—p) e,
Vel the exponentialg?\*-+&#):(p=,") in both equations. This can be
rigorously justified by multiplying both sides of the equations
- W‘Osgz 1. Zej(kp+Gp)-(p—p’) (@a) by e~JCa P integrating ovelp, and using the orthonormality
(2m) G property qf the co_mplex exponential. Equation (10) then yield
the following matrix systems:

\% i (GG P |V
’ { (%; ) ( /’)C ) (k) + GP)QgEJ(GP)
2
w - K VN~
% [Z iy (p/; k/?’ G;))ej(kp-l-G;)'(P—p')?Z] } B <E> Z&‘r (Gp - G;)GJ(GP G,)p gEJ (Gjn)

el

G,
G,
 wioS
N2 | N =—j ’(“‘;W)Jiz (11a)
- <E> Z iy (0 kps Gp)e? Fet Gl e=P ), ' o
G, 3 & (Gp _ G;) =GP (k1 G,)
- ' , G,
- wzf)gz 1.3 kG o) (9b) )
. w\"
G, . (kp —i—G;))gH]w(G;) — <;> gH]w(Gp)
Where?:;/ represents the longitudinal projection of the identity ~ — _; wgosgz. (11b)
dyadic!. = e.e., and where we have introduced the spectral (27)

operatoiV x = Jj(k,+G,)x, whichis equivalent to the spatial

differential operatoi x as long as it operates only on identical Once these systems have been solved for a given set
Bloch—Floquet expressions. It should be noted that this is n@t; k,), i.e., once the coefficientsjr;(p’; k,, G,) and

the case for the first x in the second equation because of thgx s (p'; k,, G,) have been determined, the periodic Green’s
interposition of the functiom’C> . functions (4) of the auxiliary problem shown in Fig. 3 are fully
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determined, and the Green’s functions of the original problel  **F=-—72=77 7" e el ]
shown in Fig. 1 are obtained with the relation (2) e —

<5EJ(plp’) ) 1 Z( drs 0k, G,) )
Gru(plo) S8z Jpz c, g (03K, Gp)

IAG T g,

(12)
It is worth emphasizing the generality and flexibility of the o[ — e SO OO
. . ) . . D g
PAM. Chz:;mgmg the.lattlce type necess[tate.s only cha.nglng tl ol o x| p d
set of reciprocal lattice vectofs, appearing in the matrix sys- :

tems (11) and modifying the BZ on which the integral (12) is o
performed. For example, if we pass to a hexagonal lattice, v
just have to chang&, to G, = (2r/a) [R(v/3e, + e,)/2
+k(v/3e, —e,)/2], the filling ratio to f,. = (27 /v/3)(R./a)?,

and the BZ to the new corresponding hexagonal surface [221
Changing the atoms shapes requires only the modification
the Fourier coefficients of,.(G,) and#(G,), which can pos- 08f
sess an analytical form like in (8) and for rectangular atoms [2€ I
or a numerical form for more complex shapes.

07F = 2

S~
S 06

ll. NUMERICAL RESULTS AND DISCUSSION I

[

As outlined in the previous section, the effective PBG%O'
associated with an electric current line and, therefore, Wiwﬁ 0af=
Gry (respectively, with a magnetic current line and, there
fore, with Ggys) are TM PBGs (respectively, TE PBGs).
Since in the case of a square lattice, TM PBGs (respe o2}
tively, TE PBGSs) are favored in PCs constituted of isolate
high< spots surrounded by a low-medium (respectively, o
of high< connected veins surrounding lowspots [22]), we o
consider a PC made of dielectric rods in air 61 and r
a PC made of air holes in a dielectric medium Gy ;.
The photonic band structures (or dispersion relations) f (b)
these two PCs, computed with the PWM, are shown in
Fig. 4, where we have defined the normalized frequen%@. 4. Photonic band structures of two different square-lattice 2-D PC
Wnorm = wa/2ne = a/X. In the range of frequencies shownconstituted of HiK-12 ¢, = 12) and air. The left-hand-side insets show the

the lattice of rods exhibits four TM PBGs, extending in the freBZ, with the irreductible zone shaded. The right —hand-side insets represent
’ a scaled cross-sectional view of the dielectric functiofp). (a) Lattice of

quency rang€&norm = [O~227 0.27],10.38, 0:4(_3]7 [0.58, 0.65] cylindrical rods of radius?. = 0.35a (¢, = 12, ¢, = 1). The shaded bands
and[0.77, 0.80], and the lattice of holes exhibits two TE PBGsshow the TM PBGs, representing effective PBGs k.. (b) Lattice of

i i _ indri i i i =043a (e = 1,8, = 12).
FOXEE)TC:)IZ%]I” the frequency rangegor = [0.30, 0.33] and (t;)g:]rgjsrg:ﬁ(l)\?/”;r?: I'?E Vggg;rsa,drgjgzésengnggefgective PBE;éJf@M). The shaded
The integration in (2) was performed with a standard
Gauss-Legendre integration procedure in which convergeneith the EEM, it is found that the PAM is in excellent agree-
has been insured witly;, = 8 spectral points in the BZ along ment with the EEM [27]. Moreover, with the PAM7 g, can
both directionsk, andk,. When not otherwise stated in thebe computed as efficiently &s; s, while it is very delicate to
figures, the number of plane waves in the expansions (4), (Bypcess by the EEM [19] because of the non-Hermitian nature of
and (7), which is also the size of the matrix systems (11), atite differential operator associated with the electric-field wave
which we call V¢, was set to 300 for each value bf. equation. Figs. 5(b)-10(b) show that, at excitation frequencies
The Green’s function& s for wyeem = 0.42[€ second TM  of the order of\ /2, convergence is reached witf; = 100 for
PBG of Fig. 4(a)] (respectivel\Z gas for wpoem = 0.45) [€ G gy and withNg = 300 for G a, except at the position of the
second TE PBG of Fig. 4(b)] for the source positigiiga = source where the Green'’s functions are singular.@gy, N¢
(0.0, 0.0), p'/a = (0.5, 0.5), andp’ /a = (0.2, 0.3) are shown can be reduced to a very small value suclivas= 25 without
in Figs. 5—7 (respectively, in Figs. 8-10). Comparing the comsignificant loss of accuracy, amil; = 10 already provides a
puted Green'’s functiol# 5, with the results obtained in [20] good idea of the shape of the Green'’s function for symmetry

g
‘g 03
3
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Fig. 5. Normalized Green'’s functiafi = 7 (p|p’) (modulus) for the source positigi = (0.0, 0.0) and excitation frequeney,orm = 0.42 [€ second TM PBG
of Fig. 4(a)]. (a) 2-D view oG |. (b) « cross section of (a) at = 0.0.

N =10
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~ - Ng =100
— Ng =600} |
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Fig. 6. Normalized Green’s functio® z.;(p|p’) (modulus) for the source positigri = (0.5, 0.5)a and excitation frequenay,o,m = 0.42 [€ second TM
PBG of Fig. 4(a)]. (a) 2-D view ofG s |. (b) « cross section of (a) at = 0.5.

positions of the source. The fact that the convergence behavithrs permittivity is higher; this is explained by the trend of the
of Ggy andG g, are different can be explained by the dissynfields to concentrate their energy in highiegions to lower their
metry of Maxwell equations in a PC, already mentioned in tHfeequency [23]. The fields decay very rapidly as a function of
previous section. It should be noted tBét must be increased the distancép — p’| from the source, which shows that electro-
for frequencies lying in higher gaps, but in all the cases investiragnetic waves are prevented from propagating and are totally
gated, it has been found th&%; = 300 represents a sufficient reflected because of Bragg-like diffraction on the periodic struc-
number of plane waves. ture. This feature is better emphasized in Figs. 11 and 12, which
The following physical characteristics of a PC excited by will be described in the following paragraph. As a consequence
localized source within a PBG can be inferred from the obsesf Bragg-like diffraction, the fields take the form of standing
vation of the figures presented. Energy is highly confined in theaves, which are characterized by the presence of nodal points
vicinity of the source, which reveals the effect of the PBG. It iassociated with phase inversion. In this regard, the PC acts in a
particularly concentrated in the dielectric areas of the PC whar&nner that bears a strong resemblance with a classical cavity.
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Fig. 7. Normalized Green’s functio& = (p|p’) (modulus) for the source positigri = (0.2, 0.3)a and excitation frequenay,o.m = 0.42 [€ second TM
PBG of Fig. 4(a)]. (a) 2-D view ofG g s|. (b) « cross section of (a) at = 0.3.
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Fig. 8. Normalized Green's functio@  »: (p|p’) (modulus) for the source positigri = (0.0, 0.0) and excitation frequency,.... = 0.45 [€ second TE
PBG of Fig. 4(b)]. (a) 2-D view ofG |. (b) « cross section of (a) at = 0.0.

Finally, as expected, the radiated fields reflect the symmetriesoédium €;,) and of the volumetric average of the twg. (=

the crystal: whenever the source is located at a symmetry pointf,. + (1 — f..)), respectively. It can be observed in these
the Green’s functions exhibit the same fourfold rotational syngraphs that the Green’s functions in the PC decrease much faster
metry as the crystal (Figs. 5, 6, 8, and 9), while they presehan in the homogeneous media, and fall to zero at a distance
dissymmetric patterns in the other cases (Figs. 7 and 10). smaller thar2 . This rapid vanishing of the fields, which is nat-

In all our computations, we have observed similar asymprally attributed to the effect of the PBG, emphasizes the poten-
totic behaviors follp — p/| — oo and|p — p’| — 0. Figs. 11 tial interest of PCs for filtering purposes in microstrip circuits
and 12 show typical examples of the Green’s functions awaypd antennas. In the evaluation of the integral (2), attention must
from the source|p — p'| — oc), and also include for com- be paid to the fact that the Green’s function, with (4), has a form
parison the corresponding Green'’s functions in homogeneaesiniscent of an inverse Fourier transform (but is not exactly an
media with the permittivity of the atoms() of the background inverse Fourier transform because the integrand also depends on
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Fig. 9. Normalized Green’s functio® z s (p|p’) (modulus) for the source positigrf = (0.5, 0.5)a and excitation frequenayuorm = 0.45 [€ second TE
PBG of Fig. 4(b)]. (a) 2-D view of Gz 1|. (b) x cross section of (a) at = 0.5.
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Fig. 10. Normalized Green’s functidf z 1 (p|p’) (modulus) for the source positigi = (0.2, 0.3)a and excitation frequeney,orm = 0.45 [€ second TE
PBG of Fig. 4(b)]. (a) 2-D view of G 1s]. (b)  cross section of (a) at = 0.3.

p)- As a consequence the Green’s function, being the pseudairiich the field has vanished, the Green’s function just has to be
verse Fourier transform of a sampled function, is a pseudoet to zero from that distance.

riodic function, containing degenerated repetitions of the phys-When the distance source observer tends to zero
ical pattern localized near the source, and a sufficient numi{gg — p'| — 0), the Green’s functions are singular, as in
of integration points must be taken to avoid aliasing. In Figs. HL homogeneous medium, for the 2-D problem considered
and 12, with~V;, = 15, the degenerated repetitions fall beyonfP8]. Since the Bloch—Floquet expression of the periodic
the distance/a = 5 that is shown. Practically, the pseudoperiGreen’s functions (4) present no analytical polepat g/,

odic nature of the Green'’s function does not represent a probléme singularity of the Green’s functions (12) at the position
for in-gap frequencies: As long &, is taken large enough to of the source follows only from the infiniteNg — o0)
shift the repetitions of the physical pattern above the distanceBddch—Floquet expansion. Numerically, we obtain finite values
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Fig. 11. Green'’s functio 7 (p|p’) show in Fig. 5 {nerm = 0.42 € second TM PBG Y = 100, N, = 15) farther from the source, compared with the
corresponding Green’s functions for homogeneous media of permittivites, andz,.. (a) Cross section along tleg-direction, fromp/a = (0.0, 0.0) = p’/a
top/a = (5.0, 0.0). (b) Cross section along the,(+ e, )-direction fromp/a = (0.0, 0.0) = p’/atop/a = (3.54, 3.54).
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Fig. 12. Green’s functiol z » (p|p’) show in Fig. 9 @norm = 0.45 € second TM PBG) ¥ = 300, N, = 13) farther from the source, compared with the
corresponding Green's functions for homogeneous media of permittivites andz... (a) Cross section along tleg -direction fromp/a = (0.5, 0.5) = p’/a
top/a = (5.5, 0.5). (b) Cross section along the,( + e, )-direction fromp/a = (0.5, 0.5) = p’/atop/a = (4.04, 4.04).

at p = p’ because the truncation of the expansion results in theles of their EEM counterparts, and that the PAM is, therefore,
suppression of high spatial frequency terms that are essentiahtd applicable without the addition of a procedure for the ex-
represent the sharp diverging peak near the source. Howetggtion of these singularities.
it can be seen in Figs. 5(b)-10(b) that the Green’s functions
exhibit a maximum (at least local) for any source position, and
that this maximum increases monotonically wit;, which
reveals a singular behavior at the source position. A novel closed-form method to determine Green'’s functions
The Green'’s functions in the PAM formulation do not exhibiin PCs, i.e., the PAM, has been proposed and developed in the
analytical poles, as in the EEM formulation. For this reasonase of a 2-D PC excited by an electric or magnetic current line.
the PAM might have been expected to be directly applicable fohe PAM, which consists of a combination of the PWM and
frequencies lying outside the PBGs. In fact, we have observA8M, includes the information on periodicity in the Fourier co-
that the Green'’s functions become extremely unstable as sadficients of the permittivity as the EEM. However, it is a more
as the excitation frequency penetrates into propagation regi@fficient method than the EEM because it is stable for any field
of the photonic band structure. This nonconverging behavior fGreen’s function and because it is computationally much faster.
out-of-gaps frequencies shows that the PAM Green'’s functio@seen’s functions for different positions of the source inside
contain numerical singularities, corresponding to the analytidhle PC have been presented and several physical features of

IV. CONCLUSIONS
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radiation have been pointed out. In particular, the demonstrahere Sy sp denotes the surface of the Wigner—Seitz cell of
tion of the fast decrease to zero of the fields at in-gap frequethe direct lattice, and where the functigitp) and its Fourier
cies has emphasized the filtering effect of the PBG. This paptmnsformf(k,,) are related by the pair

represents a contribution to the study of Green’s functions in

PCs, and it is believed that the PAM, coupled with a standard 1 Foo .
method-of-moments procedure, will soon be applicable to the flp) = W / f(kp)ej b dk,
analysis of printed-circuit elements or antennas on PC materiao,lg1d e
~ +OO .
APPENDIX | f(kp) = / f(p)e 7% * dp. 17)

INTERPRETATION OF THEWAVE VECTORE,, IN THE PAM

In the context of the PC’s theory, the wave vedgris es- Now let f(p) = h(p)ei®ere, Thenf(k,,) = ﬁ(k,, — k),
sentially amathematicalwave vector that is adequate for theynd (16) becomes

Bloch—Floquet expansion of the fields and can be restricted to

the BZ by periodicity. It represents in no wayphysicalwave ik, -(p+R,) G
. . . / I R,) 7B P Re) — IS Ph (G, — k
vector since such a vector can be defined only locally, either TSP > hlp+ R, > (G, ~ k)

the atoms or in the background medium. In the context of the R e (18)
phased-array theor, enters in the phasing terni*» ®- of
each source and, for finite sources dimensions, it is related to a
scanning directiorié, ¢) given by the relation or
o ) T, =sinf cos ¢ Swsp Z h (p + Rp)cjkm (p+R,)
k,=—ko (Ta;ea; + Tyey)7 with { 1, =sin fsin . R,

(13) 3 o /+°°
= loxthule P

The PAM can be viewed as a combination of the two theo- e -

ries, in thatk, is present at the same time in the Bloch—Floquet

expression of the fields [see (4)] and in the phasing factor of tg? . .
! 19) possess the same mathematical form, which suggests
sources [see (1) and (6)]. The wave vedipcan thus be viewed the( du)mpmy substitution®, — R,, p — k, (and thereforgeg

as playing two distinct roles, which give rise to identical math%; cop — Spp) o — k’p andk,, — p. Upon these substitu-
i

H H H H 1 W
matical forms after application of the Poisson’s sum formula Oons, the relation (19) becomes
the array current.

h(p/) e~ HGo—kp )P do’. (19)

oo

At this stage, we notice that (15) and the right-hand side

APPENDIX I
DERIVATION OF THE SPECTRAL REPRESENTATION OF
THE PHASED-ARRAY CURRENT

Spz Z h(k,; + G,,)ej(kf’"'G*’)"’
GP

=" cike ke / h(K,) e/ e=Re) dk! - (20)
The spatial expression of the phased-array current is given in R, —oo
(1) under the form
The right-hand sides of (20) and (15) can be equaled, as-
Py(p) =Py Y 8(p—p — R, (14) suming that(k,) = Pye7%-#' /(2m)2. This finally yields the
R, following spatial/spectral relation for the phased array current:

wh_ereP% represents eltheiqu_ or My,, and can be further Py (p) = POZ §(p—p — R,k
written using the orthonormality property of the complex ex- =
ponential as 55
_ ﬁ oI (kotG,)(p—p') (21)
m
Py, (p) G,
— POZ JRLD 1 /+o<> eIk, ik, (p—Ry) gp/ Thus, this current possesses a Bloch—Floquet form, which can
" (2m)? J o ”" be written
(15) Sy e - |
Py, (p) = Py W P(km Gp)ej(kp+Gp)~p (22)
The Poisson’s sum formula for a 2-D periodic functifip) e,

[35] reads in the crystallographic formalism
where theG,—Bloch—Floquet coefﬁcient?(k,,, G,) depend
Swsp Z f(p + Rp) - Z ejGP'pr(GP) (16) onthe positiop’ ofthe zero—phgsed source and réd&,, G,)
x; e = Pk, +G,) = ik G)
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