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An Efficient Method to Determine Green’s Functions
of a Two-Dimensional Photonic Crystal Excited by

a Line Source—The Phased-Array Method
Christophe Caloz, Anja K. Skrivervik, and Fred E. Gardiol, Life Fellow, IEEE

Abstract—A novel and efficient method to determine Green’s
functions in photonic crystals (PCs), i.e., the phased-array method
(PAM), is presented. The PAM is a combination of the plane-wave
method and the array-scanning method, which is both more
flexible and computionally faster than the eigenmodes expansion
method. A complete derivation of the electric- and magnetic-field
Green’s functions associated, respectively, with an infinite electric
and magnetic current line exciting a two-dimensional PC is given.
Although the developments are presented only for a line source,
the PAM can be extended to a dipole source. Thus, the PAM
represents a promising method for the analysis of printed-circuit
elements or antennas on PC materials. Numerical results for the
Green’s functions are shown for different positions of the source
and a discussion about radiation patterns, asymptotic behaviors,
and convergence characteristics is proposed.

Index Terms—Array scanning method, Green’s functions,
phased-array method, photonic bandgaps, photonic crystals,
plane-wave method.

I. INTRODUCTION

OVER THE last decade, photonic crystals (PCs), artificial
periodic structures made of dielectric or metallic mate-

rials, have drawn significant attention because of their ability
to exhibit photonic bandgaps (PBGs), i.e., frequency bands in
which no electromagnetic energy can propagate [1]–[5]. The ad-
vances in material processing technology and the scalability of
PCs to a wide range of frequencies have lead to a vast number
of promising applications, not only in the optical range, where
research on PCs started in the early 1990s, but also at the mi-
crowave and millimeter-wave frequencies. Among these appli-
cations, we can mention high-cavities and filters [6], low-loss
bent waveguides [7], light-emitting diodes [8], low-threshold
lasers [9], high-impedance surfaces [10], and a novel class of
microstrip lines, filters, and antennas [11]–[13]. In the future,
the utilization of all-dielectric PCs as substrates for microstrip
planar antennas will be of particular interest when going up
to millimeter frequencies. In this application the PC substrate
should filter out the spurious surface waves that would propa-
gate in a homogeneous substrate [14], without introducing pro-
hibitive losses like metallic cavities do and, therefore, increase
the gain and reduce the sidelobe level of the overall antenna.
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New wave theories and computational techniques have be-
come necessary to design novel devices and components associ-
ated with PCs. The existing analytic and numerical methods, in-
cluding the plane-wave method (PWM) [15], [16], the finite-dif-
ference method, and the finite-element method, are limited ei-
ther to fully periodic structures or highly localized modes. There
is, therefore, a need for computational schemes yielding the field
solution of integrated-circuit components interaction with di-
electric periodic materials. A very general method, consisting
of a vector integral equation in conjunction with an array scan-
ning method (ASM), has been presented in [17] to bridge this
gap. In this method, the periodic implants of the PC structure are
modeled by equivalent displacement currents, which are deter-
mined by a method-of-moments procedure. In the present paper,
we propose a different approach, in which the information on
periodicity is included directly in the Green’s function, i.e., the
phased-array method (PAM), which should soon be applicable
to microstrip structures.

The PAM is a combination of the PWM and ASM [18], [17].
In contrast to the modal approach of the eigenmodes expansion
method (EEM) [19], [20], it directly solves the inhomogeneous
dyadic wave equation for the auxiliary problem of a phased
array of sources that share the periodicity of the PC. The permit-
tivity is still expanded in a Fourier series as in the EEM, but in
the PAM, the expansion over Bloch–Floquet harmonics applies
to the periodic Green’s functions of the auxiliary problem, and
not to the field modes. Once these periodic Green’s functions
have been determined by solving a matrix system for their coef-
ficients, the actual Green’s functions are obtained by the ASM,
which transforms the fields due to infinite phased arrays to those
due to a single source. The PAM is a more efficient and flex-
ible method than the EEM. It is much faster because it involves a
more direct computational procedure. Moreover, it does not re-
quire the determination of orthonormality and closure relations,
which are necessary and sometimes problematic in the EEM.
Finally, it works equally well for all field and potential Green’s
functions, which is not the case for the EEM, where the elec-
tric-field Green’s functions, for instance, are very cumbersome
because they are related to a non-Hermitian operator [19].

In this paper, the PAM is presented in the context of an in-
finite electric or magnetic current line exciting a two-dimen-
sional (2-D) PC. Two Green’s functions, i.e., the electric- and
magnetic-field Green’s functions associated, respectively, with
the infinite electric and magnetic current line, are derived and
shown for different positions of the source within the PC. Sev-
eral features of the Green’s functions at in-gap frequencies are
pointed out, and the filtering effect of the PBGs is emphasized.
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Fig. 1. Infinite electric or magnetic current line (JJJ(���),MMM(���)) embedded in a
2-D PC. The line source is located at��� = ��� .

II. M ATHEMATICAL FORMULATION

The structure under consideration is shown in Fig. 1. It con-
sists of an unbounded 2-D PC excited by an infinite current line
source, which can be either electric or magnetic. The PAM can
be easily applied for any kind of 2-D PC, whatever lattice type
(square, hexagonal, rectangular, oblique, honeycomb) and in-
homogeneities or “atoms” shapes (circular, square, rectangular,
any; compounded) it possesses. For convenience, we will con-
sider a PC constituted of circular atoms of permittivityem-
bedded in a background medium of permittivity. The atoms
are assumed to be parallel to the-axis, and the intersections
of their axis with the -plane form a 2-D-square Bravais lat-
tice [21], as can be seen in Fig. 2. The sites of this lattice are
given by the vectors ( ), with the
primitive direct vectors and , where rep-
resents the lattice constant [see Fig. 2(a)]. The reciprocal lattice
vectors then read ( ), with the prim-
itive reciprocal vectors and
[see Fig. 2(b)], and the Brillouin zone (BZ) is the square sur-
face constituted by the Wigner–Seitz cell of the reciprocal lat-
tice, which is enclosed by the limits along both
directions and [see Fig. 2(c)]. The line is assumed to be par-
allel to the atoms, and the electric or magnetic currents on this
line can be written, respectively, as and

, where represents the position of the
line in the transverse -plane and and denote, respectively,
the electric and magnetic current intensity on the line.

It is well known [22], [23] that the modes of an unbounded
2-D PC separate into pure TM (or-polarized) and TE (or

-polarized) modes, which correspond, respectively, to the
and nonzero fields components.

By reason of symmetry, we can assert that the electric (respec-
tively, magnetic) current line may couple its energy only with
TM modes (respectively, TE modes) of the PC, as long as the
current along the line is constant. This means that the effective
PBGs will be TM PBGs (respectively, a TE PBGs) in the case
of the electric (respectively, magnetic) current line, and not
necessarily complete TM/TE PBGs. We note that such partial
(TM or TE) PBGs are easier to achieve than complete PBGs
since the latter ones consist of overlapping of the former ones.

Fig. 2. Square Bravais lattice of lattice constanta. (a) Direct lattice.
(b) Reciprocal lattice. (c) Reciprocal lattice and BZ.

Fig. 3. Phased array of infinite electric or magnetic current lines (JJJ (���),
MMM (���)) embedded in a 2-D PC. Each line source with phasinge is
located at��� = ��� + RRR .

Partial PBGs can, therefore, be obtained with lower permittivity
contrasts [ , where
and ] and lower filling ratios (ratio of
the volume of the atoms over the volume of the complete PC).

The Green’s functions for the problem depicted in Fig. 1
cannot be determined in a direct manner because neither ape-
riodic, nor periodic boundary conditions can be used; the prop-
agation medium being periodic and the source aperiodic. In the
context of the PAM, instead of directly solving the problem
of the isolated source in the PC, we first consider the geom-
etry shown in Fig. 3, where the PC is excited by an infinite
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phased array of current line sources sharing the same period-
icity as the PC and possessing progressive phase shifts given by

, where is a phasing vector (see Appendix I). The
electric and magnetic lines currents can, therefore, be written as
follows:

(1)

where each line located at possesses the phasing
.

In this auxiliary phased-array problem, the complete struc-
ture is periodic, except for the phasing dependence, which will
be used later to return to the original problem. It is, therefore,
possible to determine the Green’s functions, which will also be
periodic, except for the phasing, and which will be referred to
by the generic notation .

Once has been determined, the corresponding
Green’s function of the original problem can be ob-
tained by performing the following integration on the phasing
vector over the BZ:

(2)

The integration in (2), which is well known from the
phased-array theory [24], [18], represents in effect the super-
position of the phased-array solutions corresponding to the
phasing . In this mathematical superposition, that is
allowed by the physical superposition principle of electro-
magnetic fields in linear systems, the effects of all the sources
are canceled out, except the one of the source possessing a
zero phasing, which is to say, the source located at . It
should be noted that this source does not need to belong to the
Wigner–Seitz cell of the direct lattice.

Although the PAM is applicable to any field or potential
Green’s function, we will restrict ourselves in this paper to
the Green’s function of the electric field due to an electric
source and to the Green’s function of the magnetic field
due to a magnetic source , which we note, respectively, as

and . It should be noted that these two problems are
not dualsbecause of the dissymmetry introduced in Maxwell
equations by the space-varying permittivity of the PC. Hence,
we expect different behaviors for and , especially if
the PC presents an important permittivity contrast.

The dyadic wave equations relevant to and
read

(3a)

(3b)

where the expressions of and are given by (1).

Since the dyadic functions and are peri-
odic in modulus, they can be expanded over Bloch–Floquet
harmonics

(4)

where the -spectral coefficients and
depend on the position of the zero-phased

source and on the phasing vector. This Bloch–Floquet spec-
tral expression of the Green’s functions is formally analogous
to the one presented in [25] for the case of a phased array
of dipoles on anhomogeneousgrounded substrate. However,
because of the inhomogeneity of the propagation medium,
the spectral Green’s coefficients will be determined here in a
completely different way.

The following amplitude periodicity relations for and

:

(5)

can be easily verified, taking into account the fact that
by definition [21].

Now that we have found the spectral representations (4) of
the Green’s functions through the Bloch–Floquet theorem, we
still have to determine the corresponding spectral representation
of the array currents (1) in order to solve (3). This can be done
with the help of the Poisson’s sum formula (see Appendix II),
which yields

(6)

where denotes the surface of the BZ.
The last step before passing to the resolution of the wave

equations consists in expressing the relative permittivity
and the inverse of the relative permittivity
functions as Fourier series expansions, which is allowed because
these functions are periodic as follows:

(7)
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where the terms and denote, respectively, the
Fourier coefficients of and , which are given for cir-
cular atoms by

if

if

(8)

with the filling ratio .

Inserting (4), (6), and (7) into (3) then yields

(9a)

(9b)

where represents the longitudinal projection of the identity
dyadic , and where we have introduced the spectral
operator , which is equivalent to the spatial
differential operator as long as it operates only on identical
Bloch–Floquet expressions. It should be noted that this is not
the case for the first in the second equation because of the
interposition of the function .

Upon developing the curl terms, substituting ,
and dividing both sides in (9) by , we obtain

(10a)

(10b)

where the dependence of the spectral coefficients has
been dropped for simplicity.

By identification we can leave out the summations and

the exponentials in both equations. This can be
rigorously justified by multiplying both sides of the equations
by , integrating over , and using the orthonormality
property of the complex exponential. Equation (10) then yield
the following matrix systems:

(11a)

(11b)

Once these systems have been solved for a given set
, i.e., once the coefficients and

have been determined, the periodic Green’s
functions (4) of the auxiliary problem shown in Fig. 3 are fully
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determined, and the Green’s functions of the original problem
shown in Fig. 1 are obtained with the relation (2)

(12)

It is worth emphasizing the generality and flexibility of the
PAM. Changing the lattice type necessitates only changing the
set of reciprocal lattice vectors appearing in the matrix sys-
tems (11) and modifying the BZ on which the integral (12) is
performed. For example, if we pass to a hexagonal lattice, we
just have to change to

, the filling ratio to ,
and the BZ to the new corresponding hexagonal surface [22].
Changing the atoms shapes requires only the modification of
the Fourier coefficients of and , which can pos-
sess an analytical form like in (8) and for rectangular atoms [26],
or a numerical form for more complex shapes.

III. N UMERICAL RESULTS AND DISCUSSION

As outlined in the previous section, the effective PBGs
associated with an electric current line and, therefore, with

(respectively, with a magnetic current line and, there-
fore, with ) are TM PBGs (respectively, TE PBGs).
Since in the case of a square lattice, TM PBGs (respec-
tively, TE PBGs) are favored in PCs constituted of isolated
high- spots surrounded by a low-medium (respectively,
of high- connected veins surrounding low-spots [22]), we
consider a PC made of dielectric rods in air for and
a PC made of air holes in a dielectric medium for .
The photonic band structures (or dispersion relations) for
these two PCs, computed with the PWM, are shown in
Fig. 4, where we have defined the normalized frequency

. In the range of frequencies shown,
the lattice of rods exhibits four TM PBGs, extending in the fre-
quency ranges
and , and the lattice of holes exhibits two TE PBGs,
extending in the frequency ranges and

.
The integration in (2) was performed with a standard

Gauss–Legendre integration procedure in which convergence
has been insured with spectral points in the BZ along
both directions and . When not otherwise stated in the
figures, the number of plane waves in the expansions (4), (6),
and (7), which is also the size of the matrix systems (11), and
which we call , was set to 300 for each value of.

The Green’s functions for [ second TM
PBG of Fig. 4(a)] (respectively, for ) [
second TE PBG of Fig. 4(b)] for the source positions

, , and are shown
in Figs. 5–7 (respectively, in Figs. 8–10). Comparing the com-
puted Green’s function with the results obtained in [20]

Fig. 4. Photonic band structures of two different square-lattice 2-D PC
constituted of HiK-12 (" = 12) and air. The left-hand-side insets show the
BZ, with the irreductible zone shaded. The right —hand-side insets represent
a scaled cross-sectional view of the dielectric function" (���). (a) Lattice of
cylindrical rods of radiusR = 0:35a (" = 12, " = 1). The shaded bands
show the TM PBGs, representing effective PBGs forG . (b) Lattice of
cylindrical air holes with radiusR = 0:43a (" = 1, " = 12). The shaded
bands show the TE PBGs, representing effective PBGs forG .

with the EEM, it is found that the PAM is in excellent agree-
ment with the EEM [27]. Moreover, with the PAM, can
be computed as efficiently as , while it is very delicate to
process by the EEM [19] because of the non-Hermitian nature of
the differential operator associated with the electric-field wave
equation. Figs. 5(b)–10(b) show that, at excitation frequencies
of the order of , convergence is reached with for

and with for , except at the position of the
source where the Green’s functions are singular. For ,
can be reduced to a very small value such as without
significant loss of accuracy, and already provides a
good idea of the shape of the Green’s function for symmetry
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Fig. 5. Normalized Green’s functionG (���j��� ) (modulus) for the source position��� = (0:0; 0:0) and excitation frequency! = 0:42 [2 second TM PBG
of Fig. 4(a)]. (a) 2-D view ofjG j. (b) x cross section of (a) aty = 0:0.

Fig. 6. Normalized Green’s functionG (���j��� ) (modulus) for the source position��� = (0:5; 0:5)a and excitation frequency! = 0:42 [2 second TM
PBG of Fig. 4(a)]. (a) 2-D view ofjG j. (b) x cross section of (a) aty = 0:5.

positions of the source. The fact that the convergence behaviors
of and are different can be explained by the dissym-
metry of Maxwell equations in a PC, already mentioned in the
previous section. It should be noted that must be increased
for frequencies lying in higher gaps, but in all the cases investi-
gated, it has been found that represents a sufficient
number of plane waves.

The following physical characteristics of a PC excited by a
localized source within a PBG can be inferred from the obser-
vation of the figures presented. Energy is highly confined in the
vicinity of the source, which reveals the effect of the PBG. It is
particularly concentrated in the dielectric areas of the PC where

the permittivity is higher; this is explained by the trend of the
fields to concentrate their energy in high-regions to lower their
frequency [23]. The fields decay very rapidly as a function of
the distance from the source, which shows that electro-
magnetic waves are prevented from propagating and are totally
reflected because of Bragg-like diffraction on the periodic struc-
ture. This feature is better emphasized in Figs. 11 and 12, which
will be described in the following paragraph. As a consequence
of Bragg-like diffraction, the fields take the form of standing
waves, which are characterized by the presence of nodal points
associated with phase inversion. In this regard, the PC acts in a
manner that bears a strong resemblance with a classical cavity.
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Fig. 7. Normalized Green’s functionG (���j��� ) (modulus) for the source position��� = (0:2; 0:3)a and excitation frequency! = 0:42 [2 second TM
PBG of Fig. 4(a)]. (a) 2-D view ofjG j. (b) x cross section of (a) aty = 0:3.

Fig. 8. Normalized Green’s functionG (���j��� ) (modulus) for the source position��� = (0:0; 0:0) and excitation frequency! = 0:45 [2 second TE
PBG of Fig. 4(b)]. (a) 2-D view ofjG j. (b) x cross section of (a) aty = 0:0.

Finally, as expected, the radiated fields reflect the symmetries of
the crystal: whenever the source is located at a symmetry point,
the Green’s functions exhibit the same fourfold rotational sym-
metry as the crystal (Figs. 5, 6, 8, and 9), while they present
dissymmetric patterns in the other cases (Figs. 7 and 10).

In all our computations, we have observed similar asymp-
totic behaviors for and . Figs. 11
and 12 show typical examples of the Green’s functions away
from the source ( ), and also include for com-
parison the corresponding Green’s functions in homogeneous
media with the permittivity of the atoms () of the background

medium ( ) and of the volumetric average of the two (
), respectively. It can be observed in these

graphs that the Green’s functions in the PC decrease much faster
than in the homogeneous media, and fall to zero at a distance
smaller than . This rapid vanishing of the fields, which is nat-
urally attributed to the effect of the PBG, emphasizes the poten-
tial interest of PCs for filtering purposes in microstrip circuits
and antennas. In the evaluation of the integral (2), attention must
be paid to the fact that the Green’s function, with (4), has a form
reminiscent of an inverse Fourier transform (but is not exactly an
inverse Fourier transform because the integrand also depends on
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Fig. 9. Normalized Green’s functionG (���j��� ) (modulus) for the source position��� = (0:5; 0:5)a and excitation frequency! = 0:45 [2 second TE
PBG of Fig. 4(b)]. (a) 2-D view ofjG j. (b) x cross section of (a) aty = 0:5.

Fig. 10. Normalized Green’s functionG (���j��� ) (modulus) for the source position��� = (0:2; 0:3)a and excitation frequency! = 0:45 [2 second TE
PBG of Fig. 4(b)]. (a) 2-D view ofjG j. (b) x cross section of (a) aty = 0:3.

). As a consequence the Green’s function, being the pseudoin-
verse Fourier transform of a sampled function, is a pseudope-
riodic function, containing degenerated repetitions of the phys-
ical pattern localized near the source, and a sufficient number
of integration points must be taken to avoid aliasing. In Figs. 11
and 12, with , the degenerated repetitions fall beyond
the distance that is shown. Practically, the pseudoperi-
odic nature of the Green’s function does not represent a problem
for in-gap frequencies: As long as is taken large enough to
shift the repetitions of the physical pattern above the distance at

which the field has vanished, the Green’s function just has to be
set to zero from that distance.

When the distance source observer tends to zero
( ), the Green’s functions are singular, as in
a homogeneous medium, for the 2-D problem considered
[28]. Since the Bloch–Floquet expression of the periodic
Green’s functions (4) present no analytical poles at ,
the singularity of the Green’s functions (12) at the position
of the source follows only from the infinite ( )
Bloch–Floquet expansion. Numerically, we obtain finite values
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Fig. 11. Green’s functionG (���j��� ) show in Fig. 5 (! = 0:42 2 second TM PBG (N = 100, N = 15) farther from the source, compared with the
corresponding Green’s functions for homogeneous media of permittivites" , " , and" . (a) Cross section along theeee -direction, from���=a = (0:0; 0:0) = ��� =a
to ���=a = (5:0; 0:0). (b) Cross section along the (eee + eee )-direction from���=a = (0:0; 0:0) = ��� =a to ���=a = (3:54; 3:54).

Fig. 12. Green’s functionG (���j��� ) show in Fig. 9 (! = 0:45 2 second TM PBG) (N = 300,N = 15) farther from the source, compared with the
corresponding Green’s functions for homogeneous media of permittivites" , " and" . (a) Cross section along theeee -direction from���=a = (0:5; 0:5) = ��� =a
to ���=a = (5:5; 0:5). (b) Cross section along the (eee + eee )-direction from���=a = (0:5; 0:5) = ��� =a to ���=a = (4:04; 4:04).

at because the truncation of the expansion results in the
suppression of high spatial frequency terms that are essential to
represent the sharp diverging peak near the source. However,
it can be seen in Figs. 5(b)–10(b) that the Green’s functions
exhibit a maximum (at least local) for any source position, and
that this maximum increases monotonically with , which
reveals a singular behavior at the source position.

The Green’s functions in the PAM formulation do not exhibit
analytical poles, as in the EEM formulation. For this reason,
the PAM might have been expected to be directly applicable for
frequencies lying outside the PBGs. In fact, we have observed
that the Green’s functions become extremely unstable as soon
as the excitation frequency penetrates into propagation regions
of the photonic band structure. This nonconverging behavior for
out-of-gaps frequencies shows that the PAM Green’s functions
contain numerical singularities, corresponding to the analytical

poles of their EEM counterparts, and that the PAM is, therefore,
not applicable without the addition of a procedure for the ex-
traction of these singularities.

IV. CONCLUSIONS

A novel closed-form method to determine Green’s functions
in PCs, i.e., the PAM, has been proposed and developed in the
case of a 2-D PC excited by an electric or magnetic current line.
The PAM, which consists of a combination of the PWM and
ASM, includes the information on periodicity in the Fourier co-
efficients of the permittivity as the EEM. However, it is a more
efficient method than the EEM because it is stable for any field
Green’s function and because it is computationally much faster.
Green’s functions for different positions of the source inside
the PC have been presented and several physical features of
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radiation have been pointed out. In particular, the demonstra-
tion of the fast decrease to zero of the fields at in-gap frequen-
cies has emphasized the filtering effect of the PBG. This paper
represents a contribution to the study of Green’s functions in
PCs, and it is believed that the PAM, coupled with a standard
method-of-moments procedure, will soon be applicable to the
analysis of printed-circuit elements or antennas on PC materials.

APPENDIX I
INTERPRETATION OF THEWAVE VECTOR IN THE PAM

In the context of the PC’s theory, the wave vectoris es-
sentially amathematicalwave vector that is adequate for the
Bloch–Floquet expansion of the fields and can be restricted to
the BZ by periodicity. It represents in no way aphysicalwave
vector since such a vector can be defined only locally, either in
the atoms or in the background medium. In the context of the
phased-array theory, enters in the phasing term of
each source and, for finite sources dimensions, it is related to a
scanning direction given by the relation

with

(13)

The PAM can be viewed as a combination of the two theo-
ries, in that is present at the same time in the Bloch–Floquet
expression of the fields [see (4)] and in the phasing factor of the
sources [see (1) and (6)]. The wave vectorcan thus be viewed
as playing two distinct roles, which give rise to identical mathe-
matical forms after application of the Poisson’s sum formula to
the array current.

APPENDIX II
DERIVATION OF THE SPECTRAL REPRESENTATION OF

THE PHASED-ARRAY CURRENT

The spatial expression of the phased-array current is given in
(1) under the form

(14)

where represents either or , and can be further
written using the orthonormality property of the complex ex-
ponential as

(15)

The Poisson’s sum formula for a 2-D periodic function
[35] reads in the crystallographic formalism

(16)

where denotes the surface of the Wigner–Seitz cell of
the direct lattice, and where the function and its Fourier
transform are related by the pair

and

(17)

Now let . Then ,
and (16) becomes

(18)

or

(19)

At this stage, we notice that (15) and the right-hand side
of (19) possess the same mathematical form, which suggests
the dummy substitutions , (and, therefore,

), , and . Upon these substitu-
tions, the relation (19) becomes

(20)

The right-hand sides of (20) and (15) can be equaled, as-
suming that . This finally yields the
following spatial/spectral relation for the phased array current:

(21)

Thus, this current possesses a Bloch–Floquet form, which can
be written

(22)

where the –Bloch–Floquet coefficients depend
on the position of the zero-phased source and read

.
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